Method
Setting
Code
MOTA
MOTP
MT
ML
IDS
FRAG
Runtime
Environment
1
CasTrack
code
91.93 %
86.19 %
86.77 %
4.00 %
21
107
0.1 s
1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for
3D Object Detection from LiDAR point clouds . IEEE TGRS 2022. H. Wu, W. Han, C. Wen, X. Li and C. Wang: 3D Multi-Object Tracking in Point Clouds
Based on Prediction Confidence-Guided Data
Association . IEEE TITS 2021.
2
PermaTrack
91.92 %
85.83 %
86.77 %
2.31 %
138
345
0.1 s
GPU @ 2.5 Ghz (Python)
P. Tokmakov, J. Li, W. Burgard and A. Gaidon: Learning to Track with Object Permanence . ICCV 2021.
3
CollabMOT
91.88 %
85.86 %
86.92 %
2.46 %
248
372
0.02 s
4 cores @ 2.5 Ghz (Python)
P. Ninh and H. Kim: CollabMOT Stereo Camera Collaborative
Multi Object Tracking . IEEE Access 2024.
4
MCTrack
code
91.79 %
86.92 %
87.08 %
8.00 %
28
53
0.01 s
1 core @ 2.5 Ghz (Python)
X. Wang, S. Qi, J. Zhao, H. Zhou, S. Zhang, G. Wang, K. Tu, S. Guo, J. Zhao, J. Li and M. Yang: MCTrack: A Unified 3D Multi-Object
Tracking Framework for Autonomous Driving . 2024.
5
PC-TCNN
91.75 %
86.17 %
87.54 %
2.92 %
26
118
0.3 s
GPU (python/c++)
H. Wu, Q. Li, C. Wen, X. Li, X. Fan and C. Wang: Tracklet Proposal Network for Multi-Object
Tracking on Point Clouds . IJCAI 2021.
6
RAM
91.73 %
85.90 %
87.08 %
2.31 %
255
380
0.09 s
GPU @ 2.5 Ghz (Python)
P. Tokmakov, A. Jabri, J. Li and A. Gaidon: Object Permanence Emerges in a Random Walk along
Memory . ICML 2022.
7
BiTrack
91.63 %
87.48 %
85.85 %
7.08 %
12
233
0.01 s
1 core @ 2.5 Ghz (C/C++)
K. Huang, M. Zhang, Y. Chen and Q. Hao: BiTrack: Bidirectional Offline 3D
Multi-Object Tracking Using Camera-LiDAR Data . 2024.
8
Rethink MOT
91.47 %
85.63 %
89.38 %
4.31 %
72
180
0.3 s
4 cores @ 2.5 Ghz (Python)
L. Wang, J. Zhang, P. Cai and X. Li: Towards Robust Reference System for
Autonomous Driving: Rethinking 3D MOT . Proceedings of the 2023 IEEE
International Conference on Robotics and Automation
(ICRA) 2023.
9
RobMOT_v2
91.17 %
86.57 %
83.54 %
10.15 %
19
64
1 s
1 core @ 2.5 Ghz (C/C++)
10
PMTrack
91.16 %
86.87 %
87.38 %
6.62 %
35
89
0.02 s
1 core @ 2.5 Ghz (Python)
11
HybridTrack
91.06 %
86.86 %
85.38 %
8.31 %
32
97
0.01 s
1 core @ 2.5 Ghz (C/C++)
L. Bella, Y. Lyu, B. Cornelis and A. Munteanu: HybridTrack: A Hybrid Approach for Robust Multi-Object
Tracking . 2025.
12
McByte
91.05 %
85.71 %
80.15 %
4.00 %
85
151
99 min
GPU @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
13
RobMOT
91.04 %
86.56 %
83.54 %
10.15 %
25
71
1 s
1 core @ 2.5 Ghz (C/C++)
M. Nagy, N. Werghi, B. Hassan, J. Dias and M. Khonji: RobMOT: Robust 3D Multi-Object
Tracking by Observational Noise and State
Estimation Drift Mitigation on LiDAR PointCloud . 2024.
14
DFR
90.98 %
86.55 %
83.85 %
10.00 %
18
66
0.01 s
1 core @ 2.5 Ghz (C/C++)
15
LEGO
90.80 %
86.75 %
87.69 %
1.54 %
173
246
0.01 s
1 core @ 2.5 Ghz (Python)
Z. Zhang, J. Liu, Y. Xia, T. Huang, Q. Han and H. Liu: LEGO: Learning and Graph-Optimized Modular
Tracker for Online Multi-Object Tracking with Point
Clouds . arXiv preprint arXiv:2308.09908 2023.
16
OC-SORT
code
90.64 %
85.71 %
81.23 %
2.92 %
225
471
0.03 s
1 core @ 3.0 Ghz (Python)
J. Cao, X. Weng, R. Khirodkar, J. Pang and K. Kitani: Observation-Centric SORT: Rethinking SORT for Robust
Multi-Object Tracking . 2022.
17
CasTrack
90.63 %
86.29 %
84.62 %
6.00 %
134
204
1 s
1 core @ 2.5 Ghz (Python)
H. Wu, W. Han, C. Wen, X. Li and C. Wang: 3D Multi-Object Tracking in Point Clouds
Based on Prediction Confidence-Guided Data
Association . IEEE Transactions on Intelligent
Transportation Systems 2022.
18
VirConvTrack
90.60 %
86.92 %
84.92 %
8.15 %
115
161
1 s
1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, S. Shi, X. Li and C. Wang: Virtual Sparse Convolution for Multimodal
3D Object Detection . 2023 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) 2023.
19
RobMOT_CasA
90.45 %
86.02 %
83.23 %
10.92 %
23
91
1 s
1 core @ 2.5 Ghz (C/C++)
M. Nagy, N. Werghi, B. Hassan, J. Dias and M. Khonji: RobMOT: Robust 3D Multi-Object
Tracking by Observational Noise and State
Estimation Drift Mitigation on LiDAR PointCloud . 2024.
20
PNAS-MOT
code
90.42 %
85.62 %
86.77 %
2.31 %
552
762
0.01 s
GPU @ 2.5 Ghz (Python)
C. Peng, Z. Zeng, J. Gao, J. Zhou, M. Tomizuka, X. Wang, C. Zhou and N. Ye: PNAS-MOT: Multi-Modal Object Tracking
With Pareto Neural Architecture Search . IEEE Robotics and Automation Letters 2024.
21
RobMOT_CasA
90.37 %
87.01 %
81.69 %
8.31 %
24
372
0.01 s
1 core @ 2.5 Ghz (C/C++)
M. Nagy, N. Werghi, B. Hassan, J. Dias and M. Khonji: RobMOT: Robust 3D Multi-Object
Tracking by Observational Noise and State
Estimation Drift Mitigation on LiDAR PointCloud . 2024.
22
KFDL
90.34 %
86.67 %
86.15 %
8.31 %
25
106
0.11 s
GPU @ 2.5 Ghz (Python)
23
JHIT
90.29 %
85.61 %
84.77 %
3.23 %
168
251
0.01 s
1 core @ 3.5 Ghz (Python)
P. Claasen and J. Villiers: Interacting Multiple Model-based
Joint Homography Matrix and Multiple Object State
Estimation . 2024.
24
VirConvTrack
code
90.28 %
86.93 %
83.23 %
11.69 %
12
66
0.1 s
1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, S. Shi and C. Wang: Virtual Sparse Convolution for Multimodal
3D Object Detection . CVPR 2023.
25
SRK_ODESA(mc)
90.03 %
84.32 %
82.62 %
2.31 %
90
501
0.4 s
GPU (Python)
D. Mykheievskyi, D. Borysenko and V. Porokhonskyy: Learning Local Feature Descriptors for Multiple Object Tracking . ACCV 2020.
26
C-TWiX
code
90.03 %
85.62 %
82.15 %
2.92 %
344
620
0.01 s
8 cores @ >3.5 Ghz (Python)
M. Miah, G. Bilodeau and N. Saunier: Learning data association for multi-object tracking using only coordinates . Pattern Recognition 2025.
27
STA-MOT
89.90 %
87.02 %
81.08 %
9.23 %
244
271
0.01 s
1 core @ 2.5 Ghz (Python)
28
MCTrack_online
code
89.86 %
86.94 %
87.69 %
1.23 %
50
373
0.01 s
>8 cores @ 3.5 Ghz (Python)
X. Wang, S. Qi, J. Zhao, H. Zhou, S. Zhang, G. Wang, K. Tu, S. Guo, J. Zhao, J. Li and others: MCTrack: A Unified 3D Multi-Object Tracking
Framework for Autonomous Driving . arXiv preprint arXiv:2409.16149 2024.
29
CollabMOT
89.60 %
85.04 %
82.31 %
2.31 %
123
331
0.05 s
1 core @ 2.5 Ghz (C/C++)
P. Ninh and H. Kim: CollabMOT Stereo Camera Collaborative
Multi Object Tracking . IEEE Access 2024.
30
CenterTrack
code
89.44 %
85.05 %
82.31 %
2.31 %
116
334
0.045s
GPU
X. Zhou, V. Koltun and P. Krähenbühl: Tracking Objects as Points . ECCV 2020.
31
APPTracker+
89.44 %
85.15 %
78.62 %
3.85 %
125
415
0.04 s
GPU @ 1.5 Ghz (Python)
T. Zhou, Q. Ye, W. Luo, H. Ran, Z. Shi and J. Chen: APPTracker+: Displacement Uncertainty for
Occlusion Handling in Low-Frame-Rate Multiple
Object Tracking . International Journal of Computer
Vision 2024.
32
S3Track
88.97 %
87.25 %
86.92 %
1.69 %
154
369
0.03 s
1 core @ 2.5 Ghz (Python)
Anonymous: S$^3$Track: Self-supervised Tracking with
Soft Assignment Flow . .
33
DEFT
code
88.95 %
84.55 %
84.77 %
1.85 %
343
553
0.04 s
GPU @ 2.5 Ghz (Python)
M. Chaabane, P. Zhang, R. Beveridge and S. O'Hara: DEFT: Detection Embeddings for Tracking . Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops 2021.
34
PC3T
code
88.88 %
84.37 %
80.00 %
8.31 %
208
369
0.0045 s
1 core @ >3.5 Ghz (Python + C/C++)
H. Wu, W. Han, C. Wen, X. Li and C. Wang: 3D Multi-Object Tracking in Point Clouds
Based on Prediction Confidence-Guided Data
Association . IEEE TITS 2021.
35
Mono_3D_KF
88.77 %
83.95 %
80.46 %
3.69 %
96
218
0.3 s
1 core @ 2.5 Ghz (Python)
A. Reich and H. Wuensche: Monocular 3D Multi-Object Tracking with an EKF Approach for Long-Term Stable Tracks . 2021 IEEE 24th International Conference on Information Fusion (FUSION) 2021.
36
SRK_ODESA(hc)
88.65 %
85.70 %
78.92 %
2.15 %
133
582
0.4 s
GPU @ 2.5 Ghz (Python)
D. Mykheievskyi, D. Borysenko and V. Porokhonskyy: Learning Local Feature Descriptors for Multiple Object Tracking . ACCV 2020.
37
EagerMOT
code
88.21 %
85.73 %
76.62 %
2.46 %
121
474
0.011 s
4 cores @ 3.0 Ghz (Python)
A. Kim, A. Osep and L. Leal-Taix'e: EagerMOT: 3D Multi-Object Tracking via Sensor Fusion . IEEE International Conference on Robotics and Automation (ICRA) 2021.
38
MSA-MOT
88.19 %
85.47 %
87.23 %
1.23 %
56
405
0.01 s
1 core @ 2.5 Ghz (Python)
Z. Zhu, J. Nie, H. Wu, Z. He and M. Gao: MSA-MOT: Multi-Stage Association for 3D
Multimodality Multi-Object Tracking . Sensors 2022.
39
YONTD-MOTv2
code
88.17 %
86.27 %
80.31 %
2.62 %
30
327
0.1 s
GPU @ >3.5 Ghz (Python)
X. Wang, C. Fu, J. He, M. Huang, T. Meng, S. Zhang, H. Zhou, Z. Xu and C. Zhang: A Multi-Modal Fusion-Based 3D Multi-
Object Tracking Framework with Joint Detection . IEEE Robotics and Automation Letters 2024.
40
UG3DMOT
code
88.10 %
86.58 %
79.23 %
5.38 %
5
330
0.1 s
1 core @ 2.5 Ghz (C/C++)
J. He, C. Fu, X. Wang and J. Wang: 3D multi-object tracking based on
informatic divergence-guided data association . Signal Processing 2024.
41
LGM
88.06 %
84.16 %
85.54 %
2.15 %
469
590
0.08 s
GPU @ 2.5 Ghz (Python)
G. Wang, R. Gu, Z. Liu, W. Hu, M. Song and J. Hwang: Track without Appearance: Learn Box and
Tracklet Embedding with Local and Global Motion
Patterns for Vehicle Tracking . Proceedings of the IEEE/CVF
International Conference on Computer Vision
(ICCV) 2021.
42
TrackMPNN
code
87.74 %
84.55 %
84.77 %
1.85 %
404
607
0.05 s
4 cores @ 3.0 Ghz (Python)
A. Rangesh, P. Maheshwari, M. Gebre, S. Mhatre, V. Ramezani and M. Trivedi: TrackMPNN: A Message Passing Graph Neural
Architecture for Multi-Object Tracking . arXiv preprint arXiv:2101.04206 .
43
Stereo3DMOT
code
87.13 %
85.17 %
75.85 %
9.38 %
19
533
0.06 s
1 core @ 2.5 Ghz (C/C++)
C. Mao, C. Tan, H. Liu, J. Hu and M. Zheng: Stereo3DMOT: Stereo Vision Based 3D
Multi-object Tracking with Multimodal ReID . Chinese Conference on Pattern
Recognition and Computer Vision (PRCV) 2023.
44
S3MOT
code
86.96 %
86.56 %
84.77 %
1.23 %
582
762
0.03 s
1 core @ 2.5 Ghz (Python)
45
SpbTracker
86.95 %
86.21 %
74.92 %
4.77 %
116
544
0.07 s
2 cores @ 2.5 Ghz (Python + C/C++)
E. Im, C. Jee and J. Lee: Spb3DTracker: A Robust LiDAR-Based Person
Tracker for Noisy Environmen . arXiv preprint arXiv:2408.05940 2024.
46
TuSimple
86.62 %
83.97 %
72.46 %
6.77 %
293
501
0.6 s
1 core @ 2.5 Ghz (Matlab + C/C++)
W. Choi: Near-online multi-target tracking with aggregated local flow
descriptor . Proceedings of the IEEE International Conference on
Computer Vision 2015. K. He, X. Zhang, S. Ren and J. Sun: Deep residual learning for image recognition . Proceedings of the IEEE conference on computer vision
and pattern recognition 2016.
47
BcMODT
86.53 %
85.37 %
78.31 %
2.62 %
45
626
0.01 s
GPU @ 2.5 Ghz (Python)
K. Zhang, Y. Liu, F. Mei, J. Jin and Y. Wang: Boost Correlation Features with 3D-MiIoU-
Based Camera-LiDAR Fusion for MODT in Autonomous
Driving . Remote Sensing 2023.
48
QD-3DT
code
86.41 %
85.82 %
75.38 %
2.46 %
108
553
0.03 s
GPU @ 2.5 Ghz (Python)
H. Hu, Y. Yang, T. Fischer, F. Yu, T. Darrell and M. Sun: Monocular Quasi-Dense 3D Object Tracking . ArXiv:2103.07351 2021.
49
JMODT
code
86.27 %
85.41 %
77.38 %
2.92 %
45
585
0.01 s
GPU @ 2.5 Ghz (Python)
K. Huang and Q. Hao: Joint multi-object detection and tracking
with camera-LiDAR fusion for autonomous driving . 2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) 2021.
50
Quasi-Dense
code
85.76 %
85.01 %
69.08 %
3.08 %
93
617
0.07s
GPU (Python)
J. Pang, L. Qiu, X. Li, H. Chen, Q. Li, T. Darrell and F. Yu: Quasi-Dense Similarity Learning for Multiple Object Tracking . CVPR 2021.
51
JRMOT
code
85.70 %
85.48 %
71.85 %
4.00 %
98
372
0.07 s
4 cores @ 2.5 Ghz (Python)
A. Shenoi, M. Patel, J. Gwak, P. Goebel, A. Sadeghian, H. Rezatofighi, R. Mart\'in-Mart\'in and S. Savarese: JRMOT: A Real-Time 3D Multi-Object
Tracker and a New Large-Scale Dataset . The IEEE/RSJ International
Conference on Intelligent Robots and Systems
(IROS) 2020.
52
StrongFusion-MOT
85.63 %
85.17 %
66.15 %
6.00 %
34
399
0.01 s
8 cores @ 2.5 Ghz (Python)
X. Wang, C. Fu, J. He, S. Wang and J. Wang: StrongFusionMOT: A Multi-Object Tracking
Method Based on LiDAR-Camera Fusion . IEEE Sensors Journal 2022.
53
RA3DMOT
85.56 %
87.19 %
83.38 %
1.85 %
57
622
0.01 s
GPU @ 2.5 Ghz (Python)
54
Co-MOT
85.54 %
85.52 %
82.00 %
2.15 %
358
857
0.01 s
1 core @ 2.5 Ghz (Python)
55
PolarMOT
code
85.31 %
85.52 %
81.38 %
2.31 %
408
900
0.02 s
1 core @ 2.5 Ghz (C/C++)
A. Kim, G. Bras'o, A. O\vsep and L. Leal-Taix'e: PolarMOT: How Far Can Geometric Relations Take Us in 3D Multi-Object Tracking? . European Conference on Computer Vision (ECCV) 2022.
56
YONTD-MOT
code
85.19 %
87.10 %
67.54 %
7.08 %
21
342
0.1 s
GPU @ >3.5 Ghz (Python)
X. Wang, J. He, C. Fu, T. Meng and M. Huang: You Only Need Two Detectors to Achieve
Multi-Modal 3D Multi-Object Tracking . arXiv preprint arXiv:2304.08709 2023.
57
3DMLA
85.12 %
84.91 %
70.62 %
5.85 %
15
318
0.02 s
1 core @ 2.5 Ghz (C/C++)
M. Cho and E. Kim: 3D LiDAR Multi-Object Tracking with
Short-Term and Long-Term Multi-Level
Associations . Remote Sensing 2023.
58
EAFFMOT
85.04 %
85.13 %
70.92 %
8.31 %
15
256
0.01 s
1 core @ 2.5 Ghz (C/C++)
J. Jin, J. Zhang, K. Zhang, Y. Wang, Y. Ma and D. Pan: 3D multi-object tracking with boosting
data association and improved trajectory
management mechanism . Signal Processing 2024.
59
MASS
85.04 %
85.53 %
74.31 %
2.77 %
301
744
0.01s
C++
H. Karunasekera, H. Wang and H. Zhang: Multiple Object Tracking with attention to
Appearance, Structure, Motion and Size . IEEE Access 2019.
60
MOTSFusion
code
84.83 %
85.21 %
73.08 %
2.77 %
275
759
0.44s
GPU (Python)
J. Luiten, T. Fischer and B. Leibe: Track to Reconstruct and Reconstruct to
Track . IEEE Robotics and Automation Letters 2020.
61
DeepFusion-MOT
code
84.80 %
85.10 %
68.46 %
9.08 %
35
444
0.01 s
>8 cores @ 2.5 Ghz (Python)
X. Wang, C. Fu, Z. Li, Y. Lai and J. He: DeepFusionMOT: A 3D Multi-Object
Tracking Framework Based on Camera-LiDAR Fusion with
Deep Association . IEEE Robotics and Automation
Letters 2022.
62
mmMOT
code
84.77 %
85.21 %
73.23 %
2.77 %
284
753
0.02s
GPU @ 2.5 Ghz (Python)
W. Zhang, H. Zhou, Sun, Z. Wang, J. Shi and C. Loy: Robust Multi-Modality Multi-Object
Tracking . International Conference on
Computer Vision (ICCV) 2019.
63
TripletTrack
84.77 %
86.16 %
69.54 %
3.38 %
222
646
0.1 s
1 core @ 2.5 Ghz (C/C++)
N. Marinello, M. Proesmans and L. Van Gool: TripletTrack: 3D Object Tracking Using Triplet
Embeddings and LSTM . Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops 2022.
64
FNC2
84.75 %
85.80 %
76.00 %
5.85 %
33
311
0.01 s
1 core @ 3.0 Ghz (C/C++)
C. Jiang, Z. Wang, H. Liang and Y. Wang: A Novel Adaptive Noise Covariance
Matrix Estimation and Filtering Method:
Application to Multiobject Tracking . IEEE Transactions on Intelligent
Vehicles 2024. C. Jiang, Z. Wang and H. Liang: A Fast and High-Performance Object
Proposal Method for Vision Sensors: Application to
Object Detection . IEEE Sensors Journal 2022.
65
DiTMOT
code
84.73 %
84.40 %
74.92 %
12.92 %
31
188
0.08 s
1 core @ >3.5 Ghz (Python)
S. Wang, P. Cai, L. Wang and M. Liu: DiTNet: End-to-End 3D Object Detection
and Track ID Assignment in Spatio-Temporal
World . IEEE Robotics and Automation Letters 2021.
66
mono3DT
code
84.52 %
85.64 %
73.38 %
2.77 %
377
847
0.03 s
GPU @ 2.5 Ghz (Python)
H. Hu, Q. Cai, D. Wang, J. Lin, M. Sun, P. Krähenbühl, T. Darrell and F. Yu: Joint Monocular 3D Vehicle Detection and
Tracking . ICCV 2019.
67
SMAT
84.27 %
86.09 %
63.08 %
5.38 %
28
341
0.1 s
1 core @ 2.5 Ghz (C/C++)
N. Gonzalez, A. Ospina and P. Calvez: SMAT: Smart Multiple Affinity Metrics for
Multiple Object Tracking . Image Analysis and Recognition 2020.
68
MOTBeyondPixels
code
84.24 %
85.73 %
73.23 %
2.77 %
468
944
0.3 s
1 core @ 2.5 Ghz (C/C++)
S. Sharma, J. Ansari, J. Krishna Murthy and K. Madhava Krishna: Beyond Pixels: Leveraging
Geometry and
Shape Cues for Online Multi-Object
Tracking . Proceedings of the IEEE
International Conference on Robotics and
Automation (ICRA) 2018.
69
AB3DMOT+PointRCNN
code
83.92 %
85.30 %
66.77 %
9.08 %
10
199
0.0047s
1 core @ 2.5 Ghz (python)
X. Weng, J. Wang, D. Held and K. Kitani: 3D Multi-Object Tracking: A Baseline and
New Evaluation Metrics . IROS 2020.
70
MO-YOLO
code
83.55 %
84.61 %
72.00 %
5.23 %
252
569
0.024 s
2080ti (Python)
L. Pan, Y. Feng, W. Di, L. Bo and Z. Xingle: MO-YOLO: End-to-End Multiple-Object
Tracking Method with YOLO and MOTR . arXiv preprint arXiv:2310.17170 2023.
71
IMMDP
83.04 %
82.74 %
60.62 %
11.38 %
172
365
0.19 s
4 cores @ >3.5 Ghz (Matlab + C/C++)
Y. Xiang, A. Alahi and S. Savarese: Learning to Track: Online Multi-
Object Tracking by Decision Making . International Conference on
Computer Vision (ICCV) 2015. S. Ren, K. He, R. Girshick and J. Sun: Faster R-CNN: Towards Real-
Time
Object Detection with Region Proposal
Networks . NIPS 2015.
72
aUToTrack
82.25 %
80.52 %
72.62 %
3.54 %
1025
1402
0.01 s
1 core @ >3.5 Ghz (C/C++)
K. Burnett, S. Samavi, S. Waslander, T. Barfoot and A. Schoellig: aUToTrack: A Lightweight Object Detection and Tracking System for
the SAE AutoDrive Challenge . arXiv:1905.08758 2019.
73
\
code
80.83 %
78.73 %
73.85 %
3.23 %
16
330
0.01 s
1 core @ 2.5 Ghz (C/C++)
74
JCSTD
80.57 %
81.81 %
56.77 %
7.38 %
61
643
0.07 s
1 core @ 2.7 Ghz (C++)
W. Tian, M. Lauer and L. Chen: Online Multi-Object Tracking Using Joint
Domain Information in Traffic Scenarios . IEEE Transactions on Intelligent
Transportation Systems 2019.
75
3D-CNN/PMBM
80.39 %
81.26 %
62.77 %
6.15 %
121
613
0.01 s
1 core @ 3.0 Ghz (Matlab)
S. Scheidegger, J. Benjaminsson, E. Rosenberg, A. Krishnan and K. Granström: Mono-Camera 3D Multi-Object Tracking
Using Deep Learning Detections
and PMBM Filtering . 2018 IEEE Intelligent Vehicles
Symposium, IV 2018, Changshu, Suzhou,
China, June 26-30, 2018 2018.
76
extraCK
79.99 %
82.46 %
62.15 %
5.54 %
343
938
0.03 s
1 core @ 2.5 Ghz (Python)
G. Gunduz and T. Acarman: A lightweight online multiple object
vehicle tracking method . Intelligent Vehicles Symposium
(IV), 2018 IEEE 2018.
77
NC2
78.95 %
85.82 %
76.00 %
5.69 %
31
275
0.01 s
1 core @ 3.0 Ghz (C/C++)
C. Jiang, Z. Wang, H. Liang and Y. Wang: A Novel Adaptive Noise Covariance Matrix
Estimation and Filtering Method: Application to
Multiobject Tracking . IEEE Transactions on Intelligent
Vehicles 2024.
78
MCMOT-CPD
78.90 %
82.13 %
52.31 %
11.69 %
228
536
0.01 s
1 core @ 3.5 Ghz (Python)
B. Lee, E. Erdenee, S. Jin, M. Nam, Y. Jung and P. Rhee: Multi-class Multi-object Tracking Using Changing Point Detection . ECCVWORK 2016.
79
NOMT*
78.15 %
79.46 %
57.23 %
13.23 %
31
207
0.09 s
16 cores @ 2.5 Ghz (C++)
W. Choi: Near-Online Multi-target Tracking with
Aggregated Local Flow Descriptor
. ICCV 2015.
80
FANTrack
code
77.72 %
82.33 %
62.62 %
8.77 %
150
812
0.04 s
8 cores @ >3.5 Ghz (Python)
E. Baser, V. Balasubramanian, P. Bhattacharyya and K. Czarnecki: FANTrack: 3D Multi-Object Tracking with
Feature Association Network . ArXiv 2019.
81
LP-SSVM*
77.63 %
77.80 %
56.31 %
8.46 %
62
539
0.02 s
1 core @ 2.5 Ghz (Matlab + C/C++)
S. Wang and C. Fowlkes: Learning Optimal Parameters for Multi-target Tracking with Contextual Interactions . International Journal of Computer Vision 2016.
82
FAMNet
77.08 %
78.79 %
51.38 %
8.92 %
123
713
1.5 s
GPU @ 1.0 Ghz (Python)
P. Chu and H. Ling: FAMNet: Joint Learning of Feature,
Affinity and Multi-dimensional Assignment for
Online Multiple Object Tracking . ICCV 2019.
83
MDP
code
76.59 %
82.10 %
52.15 %
13.38 %
130
387
0.9 s
8 cores @ 3.5 Ghz (Matlab + C/C++)
Y. Xiang, A. Alahi and S. Savarese: Learning to Track: Online Multi-
Object Tracking by Decision Making . International Conference on
Computer Vision (ICCV) 2015. Y. Xiang, W. Choi, Y. Lin and S. Savarese: Subcategory-aware Convolutional Neural
Networks for Object Proposals and Detection . IEEE Winter Conference on Applications of
Computer Vision (WACV) 2017.
84
DSM
76.15 %
83.42 %
60.00 %
8.31 %
296
868
0.1 s
GPU @ 1.0 Ghz (Python)
D. Frossard and R. Urtasun: End-To-End Learning of Multi-Sensor 3D Tracking by Detection . ICRA 2018.
85
Complexer-YOLO
75.70 %
78.46 %
58.00 %
5.08 %
1186
2092
0.01 a
GPU @ 3.5 Ghz (C/C++)
M. Simon, K. Amende, A. Kraus, J. Honer, T. Samann, H. Kaulbersch, S. Milz and H. Michael Gross: Complexer-YOLO: Real-Time 3D Object
Detection and Tracking on Semantic Point
Clouds . The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR)
Workshops 2019.
86
SCEA*
75.58 %
79.39 %
53.08 %
11.54 %
104
448
0.06 s
1 core @ 4.0 Ghz (Matlab + C/C++)
J. Yoon, C. Lee, M. Yang and K. Yoon: Online Multi-object Tracking via
Structural Constraint Event Aggregation . IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR) 2016.
87
CIWT*
code
75.39 %
79.25 %
49.85 %
10.31 %
165
660
0.28 s
1 core @ 2.5 Ghz (C/C++)
A. Osep, W. Mehner, M. Mathias and B. Leibe: Combined Image- and World-Space Tracking
in Traffic Scenes . ICRA 2017.
88
NOMT-HM*
75.20 %
80.02 %
50.00 %
13.54 %
105
351
0.09 s
8 cores @ 2.5 Ghz (Matlab + C/C++)
W. Choi: Near-Online Multi-target Tracking with
Aggregated Local Flow Descriptor
. ICCV 2015.
89
SSP*
code
72.72 %
78.55 %
53.85 %
8.00 %
185
932
0.6 s
1 core @ 2.7 Ghz (Python)
P. Lenz, A. Geiger and R. Urtasun: FollowMe: Efficient Online Min-Cost Flow
Tracking with Bounded Memory and Computation . International Conference on Computer
Vision (ICCV) 2015.
90
mbodSSP*
code
72.69 %
78.75 %
48.77 %
8.77 %
114
858
0.01 s
1 core @ 2.7 Ghz (Python)
P. Lenz, A. Geiger and R. Urtasun: FollowMe: Efficient Online Min-Cost Flow
Tracking with Bounded Memory and Computation . International Conference on Computer
Vision (ICCV) 2015.
91
SASN-MCF_nano
70.86 %
82.65 %
58.00 %
7.85 %
443
975
0.02 s
1 core @ 3.0 Ghz (Python)
G. Gunduz and T. Acarman: Efficient Multi-Object Tracking by Strong Associations on Temporal Window . IEEE Transactions on Intelligent Vehicles 2019.
92
Point3DT
68.24 %
76.57 %
60.62 %
12.31 %
111
725
0.05 s
1 core @ >3.5 Ghz (Python)
Sukai Wang and M. Liu: PointTrackNet: An End-to-End Network for
3-D Object Detection and Tracking from Point
Clouds . to be submitted ICRA'20 .
93
DCO-X*
code
68.11 %
78.85 %
37.54 %
14.15 %
318
959
0.9 s
1 core @ >3.5 Ghz (Matlab + C/C++)
A. Milan, K. Schindler and S. Roth: Detection- and Trajectory-Level
Exclusion in Multiple Object Tracking . CVPR 2013.
94
NOMT
66.60 %
78.17 %
41.08 %
25.23 %
13
150
0.09 s
16 core @ 2.5 Ghz (C++)
W. Choi: Near-Online Multi-target Tracking with
Aggregated Local Flow Descriptor
. ICCV 2015.
95
RMOT*
65.83 %
75.42 %
40.15 %
9.69 %
209
727
0.02 s
1 core @ 3.5 Ghz (Matlab)
J. Yoon, M. Yang, J. Lim and K. Yoon: Bayesian Multi-Object Tracking Using
Motion
Context from Multiple Objects . IEEE Winter Conference on
Applications
of
Computer Vision (WACV) 2015.
96
MLA-MOT
64.98 %
81.69 %
28.92 %
28.31 %
28
339
0.1 s
GPU @ 2.5 Ghz (Python)
97
LP-SSVM
61.77 %
76.93 %
35.54 %
21.69 %
16
422
0.05 s
1 core @ 2.5 Ghz (Matlab + C/C++)
S. Wang and C. Fowlkes: Learning Optimal Parameters for Multi-target Tracking with Contextual Interactions . International Journal of Computer Vision 2016.
98
NOMT-HM
61.17 %
78.65 %
33.85 %
28.00 %
28
241
0.09 s
8 cores @ 2.5 Ghz (Matlab + C/C++)
W. Choi: Near-Online Multi-target Tracking with
Aggregated Local Flow Descriptor
. ICCV 2015.
99
ODAMOT
59.23 %
75.45 %
27.08 %
15.54 %
389
1274
1 s
1 core @ 2.5 Ghz (Python)
A. Gaidon and E. Vig: Online Domain Adaptation for Multi-Object Tracking . British Machine Vision Conference (BMVC) 2015.
100
SSP
code
57.85 %
77.64 %
29.38 %
24.31 %
7
704
0.6s
1 core @ 2.7 Ghz (Python)
P. Lenz, A. Geiger and R. Urtasun: FollowMe: Efficient Online Min-Cost Flow
Tracking with Bounded Memory and Computation . International Conference on Computer
Vision (ICCV) 2015.
101
SCEA
57.03 %
78.84 %
26.92 %
26.62 %
17
461
0.05 s
1 core @ 4.0 Ghz (Matlab + C/C++)
J. Yoon, C. Lee, M. Yang and K. Yoon: Online Multi-object Tracking via
Structural Constraint Event Aggregation . IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR) 2016.
102
mbodSSP
code
56.03 %
77.52 %
23.23 %
27.23 %
0
699
0.01 s
1 core @ 2.7 Ghz (Python)
P. Lenz, A. Geiger and R. Urtasun: FollowMe: Efficient Online Min-Cost Flow
Tracking with Bounded Memory and Computation . International Conference on Computer
Vision (ICCV) 2015.
103
TBD
code
55.07 %
78.35 %
20.46 %
32.62 %
31
529
10 s
1 core @ 2.5 Ghz (Matlab + C/C++)
A. Geiger, M. Lauer, C. Wojek, C. Stiller and R. Urtasun: 3D Traffic Scene Understanding from Movable Platforms . Pattern Analysis and Machine Intelligence (PAMI) 2014. H. Zhang, A. Geiger and R. Urtasun: Understanding High-Level Semantics by Modeling Traffic Patterns . International Conference on Computer Vision (ICCV) 2013.
104
SORT
54.22 %
77.57 %
25.69 %
29.08 %
1
557
.002 s
1 core @ 2.5 Ghz (Python)
A. Bewley, Z. Ge, L. Ott, F. Ramos and B. Upcroft: Simple online and realtime tracking . 2016 IEEE International Conference on
Image Processing (ICIP) 2016.
105
RMOT
52.42 %
75.18 %
21.69 %
31.85 %
50
376
0.01 s
1 core @ 3.5 Ghz (Matlab)
J. Yoon, M. Yang, J. Lim and K. Yoon: Bayesian Multi-Object Tracking Using
Motion
Context from Multiple Objects . IEEE Winter Conference on
Applications of
Computer Vision (WACV) 2015.
106
CEM
code
51.94 %
77.11 %
20.00 %
31.54 %
125
396
0.09 s
1 core @ >3.5 Ghz (Matlab + C/C++)
A. Milan, S. Roth and K. Schindler: Continuous Energy Minimization for Multitarget Tracking . IEEE TPAMI 2014.
107
MCF
45.92 %
78.25 %
14.92 %
37.23 %
21
581
0.01 s
1 core @ 2.5 Ghz (Python + C/C++)
L. Zhang, Y. Li and R. Nevatia: Global data association for multi-object tracking using network flows. . CVPR .
108
HM
43.85 %
78.34 %
12.46 %
39.54 %
12
571
0.01 s
1 core @ 2.5 Ghz (Python)
A. Geiger: Probabilistic Models for 3D Urban Scene
Understanding from Movable Platforms . 2013.
109
DP-MCF
code
38.33 %
78.41 %
18.00 %
36.15 %
2716
3225
0.01 s
1 core @ 2.5 Ghz (Matlab)
H. Pirsiavash, D. Ramanan and C. Fowlkes: Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects . IEEE conference on Computer Vision and Pattern Recognition (CVPR) 2011.
110
DCO
code
37.28 %
74.36 %
15.54 %
30.92 %
220
612
0.03 s
1 core @ >3.5 Ghz (Matlab + C/C++)
A. Andriyenko, K. Schindler and S. Roth: Discrete-Continuous Optimization
for Multi-Target Tracking . CVPR 2012.
111
FMMOVT
31.88 %
77.68 %
21.38 %
34.92 %
511
930
0.05 s
1 core @ 2.5 Ghz (C/C++)
F. Alencar, C. Massera, D. Ridel and D. Wolf: Fast Metric Multi-Object Vehicle Tracking
for Dynamical Environment Comprehension . Latin American Robotics Symposium
(LARS), 2015 2015.
112
tflf
-101.19 %
59.48 %
0.00 %
100.00 %
0
0
35 s
1 core @ 2.5 Ghz (Python)