From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
83.55 % |
84.61 % |
84.28 % |
86.99 % |
PEDESTRIAN |
55.71 % |
73.93 % |
56.23 % |
92.59 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
89.21 % |
96.69 % |
92.80 % |
34824 |
1192 |
4213 |
10.72 % |
44621 |
997 |
PEDESTRIAN |
65.50 % |
88.07 % |
75.13 % |
15302 |
2073 |
8059 |
18.64 % |
21369 |
361 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
72.00 % |
22.77 % |
5.23 % |
252 |
569 |
PEDESTRIAN |
34.02 % |
30.58 % |
35.40 % |
121 |
797 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.