From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
77.08 % |
78.79 % |
77.44 % |
83.53 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
81.46 % |
97.59 % |
88.80 % |
30747 |
760 |
6998 |
6.83 % |
34422 |
1180 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
51.38 % |
39.69 % |
8.92 % |
123 |
713 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.