From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
83.92 % |
85.30 % |
83.95 % |
88.21 % |
PEDESTRIAN |
38.39 % |
64.88 % |
39.33 % |
91.22 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
88.17 % |
97.19 % |
92.46 % |
33864 |
978 |
4542 |
8.79 % |
37736 |
864 |
PEDESTRIAN |
49.49 % |
83.65 % |
62.19 % |
11550 |
2257 |
11788 |
20.29 % |
14523 |
327 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
66.77 % |
24.15 % |
9.08 % |
10 |
199 |
PEDESTRIAN |
23.02 % |
32.99 % |
43.99 % |
218 |
940 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.