Method
Setting
Code
iRMSE
iMAE
RMSE
MAE
Runtime
Environment
1
DMD^3C
1.82
0.85
678.12
194.46
0.01 s
1 core @ 2.5 Ghz (C/C++)
2
UDeerDC3
1.81
0.84
679.28
193.29
0.01 s
1 core @ 2.5 Ghz (C/C++)
3
SAE-SPN
1.84
0.82
681.63
190.21
0.12 s
GPU @ >3.5 Ghz (Python + C/C++)
4
CAD
1.82
0.84
682.34
194.96
0.01 s
1 core @ 2.5 Ghz (Python)
5
CAD
1.86
0.85
684.54
195.65
0.03 s
1 core @ 2.5 Ghz (C/C++)
6
BP-Net
code
1.82
0.84
684.90
194.69
0.15 s
GPU @ 2.5 Ghz (Python + C/C++)
J. Tang, F. Tian, B. An, J. Li and P. Tan: Bilateral Propagation Network for Depth
Completion . CVPR 2024.
7
HSPN
1.85
0.82
684.90
191.25
0.13 s
1 core @ 2.5 Ghz (Python)
8
ImprovingDC
code
1.83
0.81
686.46
187.95
0.1 s
8 cores @ 2.5 Ghz (Python)
Y. Wang, G. Zhang, S. Wang, B. Li, Q. Liu, L. Hui and Y. Dai: Improving Depth Completion via Depth
Feature Upsampling . CVPR 2024.
9
SPN
1.86
0.83
687.65
191.85
0.3 s
GPU @ 2.5 Ghz (Python)
10
UDeerDCDC
1.87
0.86
688.41
196.38
0.01 s
1 core @ 2.5 Ghz (C/C++)
11
GMDepth
1.87
0.83
693.89
192.45
0.1 s
GPU @ 2.5 Ghz (Python)
12
TPVD
code
1.82
0.81
693.97
188.60
0.01 s
GPU @ 2.5 Ghz (Python)
Z. Yan, Y. Lin, K. Wang, Y. Zheng, Y. Wang, Z. Zhang, J. Li and J. Yang: Tri-Perspective View Decomposition for
Geometry-Aware Depth Completion . CVPR (oral) 2024.
13
RigNet++
1.82
0.81
694.24
188.62
0.06 s
GPU @ 2.5 Ghz (Python)
Z. Yan, X. Li, Z. Zhang, J. Li and J. Yang: RigNet++: Efficient Repetitive Image Guided
Network for Depth Completion . arXiv preprint arXiv:2309.00655 2023.
14
HFFNet
1.95
0.88
694.90
201.54
0.03 s
1 core @ 2.5 Ghz (C/C++)
15
LRRU-Base-L2
code
2.18
0.86
695.67
198.31
0.12 s
8 cores @ 2.5 Ghz (Python)
Y. Wang, B. Li, G. Zhang, Q. Liu, G. Tao and Y. Dai: LRRU: Long-short Range Recurrent
Updating Networks for Depth Completion . Proceedings of the IEEE International
Conference on Computer Vision (ICCV) 2023.
16
LRRU-Base-L2+L1
code
1.87
0.81
696.51
189.96
0.12 s
GPU @ 2.5 Ghz (Python)
Y. Wang, B. Li, G. Zhang, Q. Liu, G. Tao and Y. Dai: LRRU: Long-short Range Recurrent
Updating Networks for Depth Completion . Proceedings of the IEEE International
Conference on Computer Vision (ICCV) 2023.
17
BEV@DC
1.83
0.82
697.44
189.44
0.1 s
1 core @ 2.5 Ghz (Python)
W. Zhou, X. Yan, Y. Liao, Y. Lin, J. Huang, G. Zhao, S. Cui and Z. Li: BEVDC: Bird's-Eye View Assisted
Training
for Depth Completion . CVPR 2023.
18
NDDepth
1.89
0.83
698.71
192.75
0.1 s
GPU @ 2.5 Ghz (Python)
S. Shao, Z. Pei, W. Chen, P. Chen and Z. Li: NDDepth: Normal-Distance Assisted
Monocular Depth Estimation and Completion . arXiv:2311.07166 2023.
19
IEBins
1.90
0.82
700.33
192.54
0.1 s
GPU @ 2.5 Ghz (Python)
20
GFormer
1.92
0.82
702.64
190.86
0.02 s
GPU @ 2.5 Ghz (Python)
21
DP
code
1.85
0.85
704.06
197.18
0.06 s
1 core @ 2.5 Ghz (Python)
22
GCANet-accurate
2.14
0.97
707.53
213.04
0.047s
A100
23
Decomposition B
2.05
0.91
707.93
205.11
0.1 s
GPU @ 2.5 Ghz (Python)
Y. Wang, Y. Mao, Q. Liu and Y. Dai: Decomposed Guided Dynamic Filters for
Efficient RGB-Guided Depth Completion . TCSVT 2023.
24
Decomposition A
2.04
0.91
708.30
205.01
0.1 s
GPU @ 2.5 Ghz (Python)
Y. Wang, Y. Mao, Q. Liu and Y. Dai: Decomposed Guided Dynamic Filters for
Efficient RGB-Guided Depth Completion . TCSVT 2023.
25
OGNI-DC L1+L2
code
1.86
0.83
708.38
193.20
0.2 s
GPU @ 2.5 Ghz (Python)
Y. Zuo and J. Deng: OGNI-DC: Robust Depth Completion with
Optimization-Guided Neural Iterations . ECCV 2024.
26
CompletionFormer
code
2.01
0.88
708.87
203.45
0.12 s
GPU @ 2.5 Ghz (Python)
Y. Zhang, X. Guo, M. Poggi, Z. Zhu, G. Huang and S. Mattoccia: CompletionFormer: Depth
Completion with Convolutions and Vision
Transformers . CVPR 2023.
27
DySPN
code
1.88
0.82
709.12
192.71
0.16 s
GPU @ 2.0 Ghz (Python)
Y. Lin, T. Cheng, Q. Zhong, W. Zhou and H. Yang: Dynamic Spatial Propagation Network for
Depth Completion . Proceedings of the AAAI Conference on
Artificial Intelligence 2022.
28
SemAttNet
code
2.03
0.90
709.41
205.49
0.2 s
1 core @ 2.5 Ghz (C/C++)
D. Nazir, A. Pagani, M. Liwicki, D. Stricker and M. Afzal: SemAttNet: Towards Attention-based Semantic
Aware Guided Depth Completion . IEEE Access 2022.
29
RCDformer
2.12
0.98
709.59
220.49
1 s
1 core @ 2.5 Ghz (Python)
30
GCANet-fast+CSPN++
2.10
0.90
711.08
204.44
0.086s
A100
31
RigNet
2.08
0.90
712.66
203.25
0.20 s
GPU @ 2.5 Ghz (Python)
Z. Yan, K. Wang, X. Li, Z. Zhang, J. Li and J. Yang: RigNet: Repetitive Image Guided Network
for Depth Completion . ECCV 2022.
32
LRRU-Small
2.01
0.88
713.64
203.60
0.05 s
GPU @ 2.5 Ghz (Python)
Y. Wang, B. Li, G. Zhang, Q. Liu, G. Tao and Y. Dai: LRRU: Long-short Range Recurrent
Updating Networks for Depth Completion . Proceedings of the IEEE International
Conference on Computer Vision (ICCV) 2023.
33
MEDO-n
2.03
0.89
714.02
207.00
0.04 s
GPU @ 2.5 Ghz (Python)
34
HNASNet
2.44
1.20
714.28
225.08
0.0198 s
A100
35
GCANet_acc+CSPN++
2.08
0.90
714.47
206.97
0.105s
A100
36
MEDO
2.03
0.89
717.00
207.59
0.05 s
1 core @ 2.5 Ghz (Python)
37
LRRU-Small-L2+L1
1.96
0.85
717.50
197.72
0.06 s
GPU @ 2.5 Ghz (Python)
Y. Wang, B. Li, G. Zhang, Q. Liu, G. Tao and Y. Dai: LRRU: Long-short Range Recurrent
Updating Networks for Depth Completion . Proceedings of the IEEE International
Conference on Computer Vision (ICCV) 2023.
38
GCANet-middle
2.31
0.99
717.71
213.11
0.027s
A100
39
HUGNet-NL
1.92
0.84
718.73
195.65
0.21 s
GPU @ 1.5 Ghz (Python)
40
NSNet_T
2.29
1.05
718.84
219.05
0.02 s
1 core @ 2.5 Ghz (C/C++)
41
Improving Single-bra
2.06
0.91
719.65
201.92
0.1 s
8 cores @ 2.5 Ghz (Python + C/C++)
Y. Wang, G. Zhang, S. Wang, B. Li, Q. Liu, L. Hui and Y. Dai: Improving Depth Completion via
Depth Feature Upsampling . Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition 2024.
42
MFF-Net
2.21
0.94
719.85
208.11
0.05 s
GPU @ 2.5 Ghz (Python)
L. Liu, X. Song, J. Sun, X. Lyu, L. Li, Y. Liu and L. Zhang: MFF-Net: Towards Efficient Monocular Depth
Completion with Multi-modal Feature Fusion . IEEE Robotics and Automation Letters 2023.
43
MED
2.05
0.90
719.88
208.56
0.04 s
1 core @ 2.5 Ghz (Python)
44
GCANet-fast+NLSPN
2.15
0.93
720.42
210.69
0.044s
A100
45
Dual-branch
2.07
0.92
720.96
203.73
0.1 s
8 cores @ 2.5 Ghz (Python + C/C++)
Y. Wang, G. Zhang, S. Wang, B. Li, Q. Liu, L. Hui and Y. Dai: Improving Depth Completion via
Depth Feature Upsampling . Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition 2024.
46
Int
1.93
0.83
721.00
196.18
0.1 s
1 core @ 2.5 Ghz (C/C++)
47
Light-SEF
1.96
0.85
723.36
195.87
0.07 s
GPU @ 2.5 Ghz (Python)
48
NNNet
1.99
0.88
724.14
205.57
0.03 s
1 core @ 2.5 Ghz (Python)
J. Liu and C. Jung: NNNet: New Normal Guided Depth Completion
from Sparse LiDAR Data and Single Color Image . IEEE Access 2022.
49
HUGNet
2.02
0.88
724.64
200.28
0.09 s
GPU @ 1.5 Ghz (Python)
50
ReDC
code
2.05
0.89
728.31
204.60
0.02 s
RTX 2080Ti GPU with 2.5GHz processor
X. Sun, J. Ponce and Y. Wang: Revisiting deformable convolution for depth
completion . IEEE/RSJ International Conference on
Intelligent Robots and Systems 2023.
51
GMDepth (L1)
1.83
0.79
728.91
179.09
0.1 s
GPU @ 2.5 Ghz (Python)
52
PENet
code
2.17
0.94
730.08
210.55
0.032s
GPU @ 2.5 Ghz (Python)
M. Hu, S. Wang, B. Li, S. Ning, L. Fan and X. Gong: PENet: Towards Precise and Efficient
Image
Guided Depth Completion . ICRA 2021.
53
LRRU-Tiny-L2
2.09
0.90
732.43
209.14
0.04 s
GPU @ 2.5 Ghz (Python)
Y. Wang, B. Li, G. Zhang, Q. Liu, G. Tao and Y. Dai: LRRU: Long-short Range Recurrent
Updating Networks for Depth Completion . Proceedings of the IEEE International
Conference on Computer Vision (ICCV) 2023.
54
ACMNet
code
2.08
0.90
732.99
206.80
0.08 s
1 core @ 2.5 Ghz (Python + C/C++)
S. Zhao, M. Gong, H. Fu and D. Tao: Adaptive context-aware multi-modal
network
for depth completion . IEEE Transactions on Image
Processing 2021.
55
SPL
2.09
0.93
733.44
212.49
0.03 s
1 core @ 2.5 Ghz (Python)
X.Liang and C.Jung: Selective Progressive Learning for Sparse Depth Completion . Proceedings of the International Conference on Pattern Recognition (ICPR2022). 2022.
56
CluDe
code
2.08
0.88
734.59
200.48
0.14 s
GPU @ 2.5 Ghz (Python)
S. Chen, H. Zhang, X. Ma, Z. Wang and H. Li: Learning Pixel-wise Continuous Depth
Representation via Clustering for Depth
Completion . IEEE Transactions on Circuits and
Systems for Video Technology 2024.
57
MEDO-l
2.14
0.93
735.36
211.75
0.05 s
1 core @ 2.5 Ghz (Python)
58
FCFR-Net
2.20
0.98
735.81
217.15
0.1 s
GPU @ 2.5 Ghz (Python)
L. Liu, X. Song, X. Lyu, J. Diao, M. Wang, Y. Liu and L. Zhang: FCFR-Net: Feature Fusion based Coarse-
to-Fine Residual Learning for Depth Completion . Proceedings of the AAAI Conference
on Artificial Intelligence 2021.
59
UniDC Base
2.02
0.86
736.00
202.44
0.10 s
GPU @ 2.5 Ghz (Python)
60
GuideNet
code
2.25
0.99
736.24
218.83
0.14 s
GPU @ 1.5 Ghz (Python + C/C++)
J. Tang, F. Tian, W. Feng, J. Li and P. Tan: Learning Guided Convolutional Network for
Depth Completion . IEEE Transactions on Image
Processing(TIP) 2020.
61
MDANet
code
2.12
0.99
738.23
214.99
0.03 s
GPU @ 2.5 Ghz (Python)
Y. Ke, K. Li, W. Yang, Z. Xu, D. Hao, L. Huang and G. Wang: MDANet:
Multi-Modal Deep Aggregation Network for Depth
Completion . 2021 IEEE International Conference on
Robotics and Automation (ICRA) 2021.
62
CDCNet
2.18
0.99
738.26
216.05
0.06 s
GPU @ 2.5 Ghz (C/C++)
R. Fan, Z. Li, M. Poggi and S. Mattoccia: A Cascade Dense Connection Fusion Network
for Depth Completion . BMVC 2022.
63
LRRU-Tiny-L2+L1
2.04
0.85
738.86
200.28
0.04 s
GPU @ 2.5 Ghz (Python)
Y. Wang, B. Li, G. Zhang, Q. Liu, G. Tao and Y. Dai: LRRU: Long-short Range Recurrent
Updating Networks for Depth Completion . Proceedings of the IEEE International
Conference on Computer Vision (ICCV) 2023.
64
ENet
code
2.14
0.95
741.30
216.26
0.019 s
GPU @ 2.5 Ghz (Python)
M. Hu, S. Wang, B. Li, S. Ning, L. Fan and X. Gong: PENet: Towards Precise and
Efficient
Image Guided Depth Completion . ICRA 2021.
65
NLSPN
code
1.99
0.84
741.68
199.59
0.22 s
GPU @ 1.5 Ghz (Python)
J. Park, K. Joo, Z. Hu, C. Liu and I. Kweon: Non-Local Spatial Propagation Network for
Depth Completion . European Conference on Computer
Vision (ECCV) 2020.
66
CluDe*
code
2.02
0.86
742.26
197.91
0.14 s
GPU @ 2.5 Ghz (Python)
S. Chen, H. Zhang, X. Ma, Z. Wang and H. Li: Learning Pixel-wise Continuous Depth
Representation via Clustering for Depth
Completion . IEEE Transactions on Circuits and
Systems for Video Technology 2024.
67
CSPN++
2.07
0.90
743.69
209.28
0.2 s
1 core @ 2.5 Ghz (C/C++)
X. Cheng, P. Wang, G. Chenye and R. Yang: CSPN++: Learning Context and Resource
Aware
Convolutional Spatial Propagation Networks for
Depth
Completion . Thirty-Fourth AAAI Conference on
Artificial Intelligence (AAAI-20) 2020.
68
ACMNet
code
2.08
0.90
744.91
206.09
0.08 s
GPU @ 2.5 Ghz (Python + C/C++)
S. Zhao, M. Gong, H. Fu and D. Tao: Adaptive context-aware multi-modal network
for depth completion . IEEE Transactions on Image Processing 2021.
69
Single-branch
2.22
0.95
745.16
209.86
0.1 s
8 cores @ 2.5 Ghz (Python + C/C++)
Y. Wang, G. Zhang, S. Wang, B. Li, Q. Liu, L. Hui and Y. Dai: Improving Depth Completion via
Depth Feature Upsampling . Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition 2024.
70
OGNI-DC L1
code
1.81
0.79
747.64
182.29
0.2 s
GPU @ 2.5 Ghz (Python)
Y. Zuo and J. Deng: OGNI-DC: Robust Depth Completion with
Optimization-Guided Neural Iterations . ECCV 2024.
71
CDCNet-lite
2.22
0.95
748.99
215.38
0.04 s
GPU @ 2.5 Ghz (C/C++)
R. Fan, Z. Li, M. Poggi and S. Mattoccia: A Cascade Dense Connection Fusion Network
for Depth Completion . BMVC 2022.
72
Ms_Unc_UARes-B
code
1.98
0.85
751.59
198.09
0.1 s
GPU @ 2.5 Ghz (Python)
Y. Zhu, W. Dong, L. Li, J. Wu, X. Li and G. Shi: Robust Depth Completion with Uncertainty-Driven Loss Functions . accepted by AAAI2022 .
73
UberATG-FuseNet
2.34
1.14
752.88
221.19
0.09 s
GPU @ 2.5 Ghz (Python)
Y. Chen, B. Yang, M. Liang and R. Urtasun: Learning Joint 2D-3D Representations
for Depth Completion . ICCV 2019.
74
LDCNet
code
2.33
0.98
753.15
218.02
0.05 s
GPU @ 2.5 Ghz (Python)
Z. Yan, Y. Zheng, C. Li, J. Li and J. Yang: Learnable Differencing Center for
Nighttime Depth Perception . 2023.
75
DepthPrompting
2.02
0.87
754.48
206.15
0.06 s
1 core @ 2.5 Ghz (C/C++)
J. Park, C. Jeong, J. Lee and H. Jeon: Depth Prompting for Sensor-Agnostic Depth
Estimation . Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition 2024.
76
DenseLiDAR
2.25
0.96
755.41
214.13
0.02 s
1 core @ 2.5 Ghz (Python)
J. Gu, Z. Xiang, Y. Ye and L. Wang: DenseLiDAR: A Real-Time Pseudo Dense
Depth Guided Depth Completion Network . IEEE Robotics and Automation Letters 2021.
77
DepthPrompting
2.04
0.88
756.27
206.62
0.06 s
1 core @ 2.5 Ghz (C/C++)
78
DepthPrompting
2.02
0.86
756.84
204.94
0.06 s
1 core @ 2.5 Ghz (Python)
79
DeepLiDAR
code
2.56
1.15
758.38
226.50
0.07s
GPU @ 1.5 Ghz (Python)
J. Qiu, Z. Cui, Y. Zhang, X. Zhang, S. Liu, B. Zeng and M. Pollefeys: DeepLiDAR: Deep Surface Normal Guided Depth Prediction for Outdoor Scene From Sparse LiDAR Data and Single Color Image . The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
80
DANConv
code
2.17
0.92
759.65
213.68
0.05 s
GPU @ 2.5 Ghz (Python)
L. Yan, K. Liu and G. Long: DAN-Conv: Depth aware non-local convolution for LiDAR depth completion . Electronics Letters 2021.
81
MSG-CHN
code
2.30
0.98
762.19
220.41
0.01 s
GPU @ 2.5 Ghz (Python + C/C++)
A. Li, Z. Yuan, Y. Ling, W. Chi, C. Zhang and others: A Multi-Scale Guided Cascade Hourglass Network for Depth Completion . The IEEE Winter Conference on Applications of Computer Vision 2020.
82
ABCD
code
2.29
0.97
764.61
220.86
0.02 s
1 core @ 2.5 Ghz (C/C++)
Y. Jeon, H. Kim and S. Seo: ABCD: Attentive Bilateral Convolutional
Network for Robust Depth Completion . IEEE Robotics and Automation Letters 2021.
83
CompletionFormer
code
1.89
0.80
764.87
183.88
0.12 s
GPU @ 2.5 Ghz (Python)
Y. Zhang, X. Guo, M. Poggi, Z. Zhu, G. Huang and S. Mattoccia: CompletionFormer: Depth
Completion with Convolutions and Vision
Transformers . CVPR 2023.
84
LRRU-Mini-L2
code
2.26
0.94
765.95
218.31
0.03 s
GPU @ 2.5 Ghz (Python)
Y. Wang, B. Li, G. Zhang, Q. Liu, G. Tao and Y. Dai: LRRU: Long-short Range Recurrent
Updating Networks for Depth Completion . Proceedings of the IEEE International
Conference on Computer Vision (ICCV) 2023.
85
DSPN
2.47
1.03
766.74
220.36
0.34 s
1 core @ 2.5 Ghz (Python)
Z. Xu, H. Yin and J. Yao: Deformable Spatial Propagation Networks
For Depth Completion . 2020 IEEE International Conference
on Image Processing (ICIP) 2020.
86
ADNet_Small
2.07
0.88
767.17
209.44
0.05 s
1 core @ 2.5 Ghz (Python)
J. Kim, J. Noh, M. Jeong, W. Lee, Y. Park and J. Park: ADNet: Non-Local Affinity Distillation Network for Lightweight Depth Completion With Guidance From Missing LiDAR Points . IEEE Robotics and Automation Letters 2024.
87
RGB_guide&certainty
code
2.19
0.93
772.87
215.02
0.02 s
GPU @ 1.5 Ghz (Python)
W. Van Gansbeke, D. Neven, B. De Brabandere and L. Van Gool: Sparse and noisy LiDAR completion with
RGB guidance and uncertainty . International Conference on Machine
Vision Applications (MVA) 2019.
88
GAENet(Full)
code
2.29
1.08
773.90
231.29
0.05 s
GPU @ 2.5 Ghz (Python)
W. Du, H. Chen, H. Yang and Y. Zhang: Depth Completion using Geometry-Aware
Embedding . 2022 IEEE International Conference on
Robotics and Automation (ICRA) 2022.
89
LRRU-Mini-L2+L1
2.21
0.90
774.43
210.87
0.03 s
GPU @ 2.5 Ghz (Python)
Y. Wang, B. Li, G. Zhang, Q. Liu, G. Tao and Y. Dai: LRRU: Long-short Range Recurrent
Updating Networks for Depth Completion . Proceedings of the IEEE International
Conference on Computer Vision (ICCV) 2023.
90
DVMN
2.21
0.94
776.31
220.37
0.12 s
GPU @ 1.5 Ghz (Python)
L. Reichardt, P. Mangat and O. Wasenmüller: DVMN: Dense Validity Mask Network for Depth
Completion . IEEE International Conference on
Intelligent Transportation (ITSC) 2021.
91
PwP
2.42
1.13
777.05
235.17
0.1 s
GPU @ 2.5 Ghz (Python + C/C++)
H. Yan Xu: Depth Completion from Sparse LiDAR Data
with Depth-Normal Constraints . Proceedings of the IEEE International
Conference on Computer Vision 2019.
92
Revisiting
code
2.42
0.99
792.80
225.81
0.05 s
GPU @ 2.0 Ghz (Python)
L. Yan, K. Liu and E. Belyaev: Revisiting Sparsity Invariant Convolution:
A Network for Image Guided Depth Completion . IEEE Access 2020.
93
Ms_Unc_UARes
code
1.98
0.83
795.61
190.88
0.08 s
GPU @ 2.5 Ghz (Python)
Y. Zhu, W. Dong, L. Li, J. Wu, X. Li and G. Shi: Robust Depth Completion with Uncertainty-Driven Loss Functions . accepted by AAAI2022 .
94
BA&GC
2.44
1.05
799.31
232.98
0.05 s
GPU @ 2.5 Ghz (Python)
K. Liu, Q. Li and Y. Zhou: An adaptive converged depth
completion network based on efficient RGB
guidance . Multimedia Tools and
Applications 2022.
95
UniDC
code
2.15
0.88
804.33
211.11
0.56 s
1 core @ 2.5 Ghz (C/C++)
96
CrossGuidance
2.73
1.33
807.42
253.98
0.2 s
1 core @ 2.5 Ghz (Python)
S. Lee, J. Lee, D. Kim and J. Kim: Deep Architecture with Cross Guidance
Between Single Image and Sparse LiDAR Data for Depth
Completion . IEEE Access 2020.
97
Sparse-to-Dense (gd)
code
2.80
1.21
814.73
249.95
0.08 s
GPU @ 1.5 Ghz (Python)
F. Ma, G. Cavalheiro and S. Karaman: Self-supervised Sparse-to-Dense: Self-
supervised Depth Completion from LiDAR and
Monocular Camera . 2019 IEEE International Conference on Robotics
and Automation (ICRA) 2019.
98
TFDCNet
3.27
1.22
826.08
243.69
0.17 s
1 core @ 2.5 Ghz (Python)
99
NConv-CNN-L2 (gd)
code
2.60
1.03
829.98
233.26
0.02 s
GPU @ 1.5 Ghz (Python)
A. Eldesokey, M. Felsberg and F. Khan: Confidence propagation through cnns for
guided sparse depth regression . IEEE transactions on pattern analysis
and machine intelligence 2019.
100
DDP
2.10
0.85
832.94
203.96
0.08 s
GPU @ 1.5 Ghz (Python)
Y. Yang, A. Wong and S. Soatto: Dense depth posterior (ddp) from single image and sparse
range . Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition 2019.
101
SSGP
2.51
1.09
838.22
244.70
0.14 s
RTX 2080 Ti
R. Schuster, O. Wasenmüller, C. Unger and D. Stricker: SSGP: Sparse Spatial Guided Propagation for Robust and Generic Interpolation . IEEE Winter Conference on Applications of Computer Vision (WACV) 2021.
102
TWISE
code
2.08
0.82
840.20
195.58
0.02 s
GPU @ 2.5 Ghz (Python)
S. Imran, X. Liu and D. Morris: Depth Completion With Twin
Surface Extrapolation at Occlusion Boundaries . Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR) 2021.
103
EMNet
2.13
0.84
841.70
196.17
0.01 s
1 core @ 2.5 Ghz (C/C++)
104
ScaffFusion-SSL
code
3.24
0.88
847.22
205.75
0.03 s
1 core @ 1.5 Ghz (Python)
A. Wong, S. Cicek and S. Soatto: Learning topology from synthetic data for
unsupervised depth completion . IEEE Robotics and Automation Letters 2021.
105
NConv-CNN-L1 (gd)
code
2.52
0.92
859.22
207.77
0.02 s
GPU @ 1.5 Ghz (Python)
A. Eldesokey, M. Felsberg and F. Khan: Confidence propagation through cnns for
guided sparse depth regression . IEEE transactions on pattern analysis
and machine intelligence 2019.
106
GCANet-acc+NLSPN
3.18
1.21
885.28
259.49
0.088s
A100
107
IR_L2
4.92
1.35
901.43
292.36
0.05 s
GPU @ 2.5 Ghz (Python)
K. Lu, N. Barnes, S. Anwar and L. Zheng: From Depth What Can You See? Depth Completion via Auxiliary Image Reconstruction . Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2020.
108
AHSPN
2.66
1.06
912.17
251.18
0.1 s
GPU @ 2.5 Ghz (Python + C/C++)
109
HFFNet(depth-only)
2.61
1.02
913.16
238.55
0.1 s
1 core @ 2.5 Ghz (C/C++)
110
Spade-RGBsD
2.17
0.95
917.64
234.81
0.07 s
GPU @ 2.5 Ghz (Python)
M. Jaritz, R. Charette, E. Wirbel, X. Perrotton and F. Nashashibi: Sparse and Dense Data with CNNs: Depth
Completion and Semantic Segmentation . International Conference on 3D Vision
(3DV) 2018.
111
HFFNet(d1)
code
2.78
1.21
918.91
273.91
0.1 s
1 core @ 2.5 Ghz (Python)
112
glob_guide&certainty
code
2.80
1.07
922.93
249.11
0.02 s
GPU @ 1.5 Ghz (Python)
W. Van Gansbeke, D. Neven, B. De Brabandere and L. Van Gool: Sparse and noisy LiDAR completion with
RGB guidance and uncertainty . International Conference on Machine
Vision Applications (MVA) 2019.
113
DesNet
2.95
1.13
938.45
266.24
0.01 s
GPU @ 2.5 Ghz (Python)
Z. Yan, K. Wang, X. Li, Z. Zhang, J. Li and J. Yang: Desnet: Decomposed Scale-Consistent
Network for Unsupervised Depth Completion . AAAI (oral) 2023.
114
DFineNet
code
3.21
1.39
943.89
304.17
0.02 s
GPU @ 2.5 Ghz (Python)
Y. Zhang, T. Nguyen, I. Miller, S. Shivakumar, S. Chen, C. Taylor and V. Kumar: DFineNet: Ego-Motion Estimation and
Depth Refinement from Sparse, Noisy Depth Input
with RGB Guidance . CoRR 2019.
115
Sparse-to-Dense (d)
code
3.21
1.35
954.36
288.64
0.04 s
GPU @ 1.5 Ghz (Python)
F. Ma, G. Cavalheiro and S. Karaman: Self-supervised Sparse-to-Dense: Self-
supervised Depth Completion from LiDAR and
Monocular Camera . 2019 IEEE International Conference on Robotics
and Automation (ICRA) 2019.
116
pNCNN (d)
code
3.37
1.05
960.05
251.77
0.02 s
1 core @ 2.5 Ghz (Python)
A. Eldesokey, M. Felsberg, K. Holmquist and M. Persson: Uncertainty-Aware CNNs for Depth
Completion: Uncertainty from Beginning to End . IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) 2020.
117
Conf-Net
code
3.10
1.09
962.28
257.54
0.02 s
GPU @ 2.5 Ghz (Python)
H. Hekmatian, S. Al-Stouhi and J. Jin: Conf-Net: Predicting Depth Completion
Error-Map For High-Confidence Dense 3D Point-
Cloud . 2019.
118
DCrgb_80b_3coef
2.43
0.98
965.87
215.75
0.15 s
1 core @ 2.5 Ghz (C/C++)
S. Imran, Y. Long, X. Liu and D. Morris: Depth coefficients for depth
completion . 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) 2019.
119
DCd_all
2.87
1.13
988.38
252.21
0.1 s
1 core @ 2.5 Ghz (C/C++)
S. Imran, Y. Long, X. Liu and D. Morris: Depth coefficients for depth
completion . 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) 2019.
120
LW-DepthNet
2.99
1.09
991.88
261.67
0.09 s
GPU @ 2.5 Ghz (Python)
L. Bai, Y. Zhao, M. Elhousni and X. Huang: DepthNet: Real-Time LiDAR Point Cloud
Depth Completion for Autonomous Vehicles . arXiv preprint arXiv:2007.02438 2020.
121
CSPN
2.93
1.15
1019.64
279.46
1 s
GPU @ 2.5 Ghz (Python + C/C++)
X. Cheng, P. Wang and R. Yang: Depth estimation via affinity learned
with convolutional spatial propagation network . Proceedings of the European
Conference on Computer Vision (ECCV) 2018. X. Cheng, P. Wang and R. Yang: Learning Depth with Convolutional
Spatial
Propagation Network . arXiv preprint arXiv:1810.02695 2018.
122
Spade-sD
2.60
0.98
1035.29
248.32
0.04 s
GPU @ 2.5 Ghz (Python)
M. Jaritz, R. Charette, E. Wirbel, X. Perrotton and F. Nashashibi: Sparse and Dense Data with CNNs: Depth
Completion and Semantic Segmentation . International Conference on 3D Vision
(3DV) 2018.
123
UDCM
2.89
1.04
1041.55
257.53
0.10 s
1 core @ 2.5 Ghz (Python)
124
Morph-Net
3.84
1.57
1045.45
310.49
0.17 s
GPU @ 1.5 Ghz (Matlab + C/C++)
M. Dimitrievski, P. Veelaert and W. Philips: Learning morphological operators for depth completion . Advanced Concepts for Intelligent Vision Systems 2018.
125
SynthProjV
3.12
1.13
1062.48
268.37
0.1 s
1 core @ 2.5 Ghz (C/C++)
A. Lopez-Rodriguez, B. Busam and K. Mikolajczyk: Project to Adapt: Domain Adaptation for
Depth Completion from Noisy and Sparse Sensor
Data . Asian Conference on Computer Vision
(ACCV) 2020.
126
KBNet
code
2.95
1.02
1069.47
256.76
0.01 s
1 core @ 2.5 Ghz (C/C++)
A. Wong and S. Soatto: Unsupervised Depth Completion with
Calibrated Backprojection Layers . Proceedings of the IEEE International
Conference on Computer Vision (ICCV) 2021.
127
DCPlugin
3.45
1.18
1069.88
272.55
0.01 s
1 core @ 2.5 Ghz (C/C++)
128
VLW-DepthNet
3.43
1.21
1077.22
282.02
0.09
GPU @ 2.5 Ghz (Python)
L. Bai, Y. Zhao, M. Elhousni and X. Huang: DepthNet: Real-Time LiDAR Point Cloud
Depth Completion for Autonomous Vehicles . arXiv preprint arXiv:2007.02438 2020.
129
SynthProj
3.53
1.19
1095.26
280.42
0.1 s
1 core @ 2.5 Ghz (C/C++)
A. Lopez-Rodriguez, B. Busam and K. Mikolajczyk: Project to Adapt: Domain Adaptation for
Depth Completion from Noisy and Sparse Sensor
Data . Asian Conference on Computer Vision
(ACCV) 2020.
130
DCd_3
2.95
1.07
1109.04
234.01
0.1 s
1 core @ 2.5 Ghz (C/C++)
S. Imran, Y. Long, X. Liu and D. Morris: Depth coefficients for depth
completion . 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) 2019.
131
ScaffFusion
code
3.32
1.17
1121.89
282.86
0.03 s
1 core @ 1.5 Ghz (Python)
A. Wong, S. Cicek and S. Soatto: Learning topology from synthetic data for
unsupervised depth completion . IEEE Robotics and Automation Letters 2021.
132
AdaFrame-VGG8
code
3.32
1.16
1125.67
291.62
0.02 s
GPU @ 1.5 Ghz (Python)
A. Wong, X. Fei, B. Hong and S. Soatto: An Adaptive Framework for Learning
Unsupervised Depth Completion . IEEE Robotics and Automation Letters 2021.
133
VOICED
code
3.56
1.20
1169.97
299.41
0.02 s
1 core @ 2.5 Ghz (C/C++)
A. Wong, X. Fei, S. Tsuei and S. Soatto: Unsupervised Depth Completion from Visual
Inertial Odometry . IEEE Robotics and Automation Letters 2020.
134
DFuseNet
code
3.62
1.79
1206.66
429.93
0.08 s
GPU @ 2.0 Ghz (C/C++)
S. Shivakumar, T. Nguyen, S. Chen and C. Taylor: DFuseNet: Deep Fusion of RGB and Sparse Depth Information for Image Guided Dense Depth Completion . arXiv preprint arXiv:1902.00761 2019.
135
NonLearning Complete
3.63
1.23
1222.00
303.82
0.84 s
1 core @ 3.5 Ghz (Python)
B. Krauss, G. Schroeder, M. Gustke and A. Hussein: Deterministic Guided LiDAR
Depth Map Completion . 2021 IEEE Intelligent Vehicles Symposium
(IV) 2021.
136
PDC
3.89
1.26
1227.96
288.55
10 s
1 core @ 2.5 Ghz (Python)
D. Teutscher, P. Mangat and O. Wasenmüller: PDC: Piecewise Depth Completion
utilizing Superpixels . IEEE International Conference on
Intelligent Transportation (ITSC) 2021.
137
Physical_Surface_Mod
code
3.76
1.21
1239.84
298.30
0.06 s
1 core @ 2.5 Ghz (C/C++)
Y. Zhao, L. Bai, Z. Zhang and X. Huang: A Surface Geometry Model for LiDAR Depth Completion . IEEE Robotics and Automation Letters 2021.
138
NG_Depth
code
14.93
1.38
1266.22
305.98
0.8 s
1 core @ 2.5 Ghz (C/C++)
P. An, Y. Gao, W. Fu, J. Ma, B. Fang and K. Yu: Lambertian Model Based Normal Guided Depth
Completion for LiDAR-Camera System . IEEE GRSL 2021.
139
NConv-CNN (d)
code
4.67
1.52
1268.22
360.28
0.01 s
GPU @ 1.5 Ghz (Python)
A. Eldesokey, M. Felsberg and F. Khan: Propagating Confidences through CNNs
for Sparse Data Regression . 2018.
140
IP-Basic
code
3.78
1.29
1288.46
302.60
0.011 s
1 core @ >3.5 Ghz (Python)
J. Ku, A. Harakeh and S. Waslander: In Defense of Classical Image
Processing: Fast Depth Completion on the CPU . 2018 15th Conference on Computer and
Robot Vision (CRV) 2018.
141
Sparse2Dense(w/o gt)
code
4.07
1.57
1299.85
350.32
0.08 s
GPU @ 1.5 Ghz (Python + C/C++)
F. Ma, G. Cavalheiro and S. Karaman: Self-supervised Sparse-to-Dense: Self-
supervised Depth Completion from LiDAR and
Monocular Camera . 2019 IEEE International Conference on Robotics
and Automation (ICRA) 2019.
142
ADNN
code
59.39
3.19
1325.37
439.48
.04 s
GPU @ 2.5 Ghz (Python)
S. Nathaniel Chodosh: Deep Convolutional Compressed Sensing for LiDAR Depth Completion . Asian Conference on Computer Vision (ACCV) 2018.
143
NN+CNN
3.25
1.29
1419.75
416.14
0.02 s
GPU
J. Uhrig, N. Schneider, L. Schneider, U. Franke, T. Brox and A. Geiger: Sparsity Invariant CNNs . International Conference on 3D Vision (3DV) 2017.
144
B-ADT
4.16
1.23
1480.36
298.72
0.120 sec.
GPU
Y. Yao, M. Roxas, R. Ishikawa, S. Ando, j. shimamura and T. Oishi: Discontinuous and Smooth Depth Completion with Binary Anisotropic Diffusion Tensor . IEEE Robotics and Automation Letters 2020.
145
SparseConvs
code
4.94
1.78
1601.33
481.27
0.01 s
GPU
J. Uhrig, N. Schneider, L. Schneider, U. Franke, T. Brox and A. Geiger: Sparsity Invariant CNNs . International Conference on 3D Vision (3DV) 2017.
146
NadarayaW
6.34
1.84
1852.60
416.77
0.05 s
1 core @ 2.5 Ghz (Python)
J. Uhrig, N. Schneider, L. Schneider, U. Franke, T. Brox and A. Geiger: Sparsity Invariant CNNs . International Conference on 3D Vision (3DV) 2017.
147
SGDU
7.38
2.05
2312.57
605.47
0.2 s
4 cores @ 2.5 Ghz (C/C++)
N. Schneider, L. Schneider, P. Pinggera, U. Franke, M. Pollefeys and C. Stiller: Semantically Guided Depth Upsampling . German Conference on Pattern Recognition 2016.