From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
89.60 % |
85.04 % |
89.96 % |
87.80 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
93.37 % |
97.73 % |
95.50 % |
36630 |
851 |
2603 |
7.65 % |
45566 |
1296 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
82.31 % |
15.38 % |
2.31 % |
123 |
331 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.