From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
84.77 % |
86.16 % |
85.42 % |
88.95 % |
PEDESTRIAN |
50.85 % |
74.17 % |
51.45 % |
92.21 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
88.18 % |
98.85 % |
93.21 % |
34423 |
402 |
4614 |
3.61 % |
37952 |
1106 |
PEDESTRIAN |
55.29 % |
94.11 % |
69.66 % |
12902 |
808 |
10432 |
7.26 % |
14762 |
437 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
69.54 % |
27.08 % |
3.38 % |
222 |
646 |
PEDESTRIAN |
22.68 % |
48.45 % |
28.87 % |
139 |
986 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.