Method

TripletTrack [TripletTrack]


Submitted on 16 Mar. 2022 21:40 by
Nicola Marinello (KU Leuven)

Running time:0.1 s
Environment:1 core @ 2.5 Ghz (C/C++)

Method Description:
We start from an off-the-shelf 3D object detector, and apply a
tracking mechanism where objects are matched by an affinity score
computed on local object feature embeddings and motion
descriptors. The feature embeddings are trained to include
information about the visual appearance and monocular 3D object
characteristics, while motion descriptors provide a strong
representation of object trajectories.
Parameters:
TBD
Latex Bibtex:
@InProceedings{Marinello_2022_CVPR,

author = {Marinello, Nicola and Proesmans, Marc and Van
Gool, Luc},

title = {TripletTrack: 3D Object Tracking Using Triplet
Embeddings and LSTM},

booktitle = {Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops},

month = {June},

year = {2022},

pages = {4500-4510}

}

Detailed Results

From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2]. The tables below show all of these metrics.


Benchmark MOTA MOTP MODA MODP
CAR 84.77 % 86.16 % 85.42 % 88.95 %
PEDESTRIAN 50.85 % 74.17 % 51.45 % 92.21 %

Benchmark recall precision F1 TP FP FN FAR #objects #trajectories
CAR 88.18 % 98.85 % 93.21 % 34423 402 4614 3.61 % 37952 1106
PEDESTRIAN 55.29 % 94.11 % 69.66 % 12902 808 10432 7.26 % 14762 437

Benchmark MT PT ML IDS FRAG
CAR 69.54 % 27.08 % 3.38 % 222 646
PEDESTRIAN 22.68 % 48.45 % 28.87 % 139 986

This table as LaTeX


[1] K. Bernardin, R. Stiefelhagen: Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia: Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.


eXTReMe Tracker