From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
78.90 % |
82.13 % |
79.56 % |
86.37 % |
PEDESTRIAN |
45.94 % |
72.44 % |
46.56 % |
91.78 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
81.84 % |
98.97 % |
89.59 % |
30247 |
316 |
6713 |
2.84 % |
32831 |
985 |
PEDESTRIAN |
52.33 % |
90.64 % |
66.35 % |
12200 |
1260 |
11112 |
11.33 % |
14725 |
635 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
52.31 % |
36.00 % |
11.69 % |
228 |
536 |
PEDESTRIAN |
20.62 % |
45.02 % |
34.36 % |
143 |
764 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.