From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
80.57 % |
81.81 % |
80.75 % |
85.69 % |
PEDESTRIAN |
44.20 % |
72.09 % |
44.43 % |
91.79 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
83.37 % |
98.72 % |
90.40 % |
31162 |
405 |
6217 |
3.64 % |
34918 |
798 |
PEDESTRIAN |
48.52 % |
92.70 % |
63.70 % |
11286 |
889 |
11975 |
7.99 % |
13018 |
264 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
56.77 % |
35.85 % |
7.38 % |
61 |
643 |
PEDESTRIAN |
16.49 % |
49.83 % |
33.68 % |
53 |
917 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.