From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
85.76 % |
85.01 % |
86.03 % |
88.06 % |
PEDESTRIAN |
56.81 % |
73.99 % |
57.91 % |
91.75 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
89.02 % |
98.54 % |
93.54 % |
34782 |
517 |
4288 |
4.65 % |
38708 |
1360 |
PEDESTRIAN |
63.82 % |
92.08 % |
75.39 % |
14925 |
1284 |
8460 |
11.54 % |
18443 |
856 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
69.08 % |
27.85 % |
3.08 % |
93 |
617 |
PEDESTRIAN |
31.27 % |
49.83 % |
18.90 % |
254 |
1121 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.