From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
88.21 % |
85.73 % |
88.56 % |
88.57 % |
PEDESTRIAN |
51.11 % |
64.75 % |
52.13 % |
89.25 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
90.60 % |
98.69 % |
94.47 % |
33638 |
446 |
3489 |
4.01 % |
37846 |
1206 |
PEDESTRIAN |
61.70 % |
87.02 % |
72.20 % |
14394 |
2147 |
8936 |
19.30 % |
18380 |
944 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
76.62 % |
20.92 % |
2.46 % |
121 |
474 |
PEDESTRIAN |
27.84 % |
48.11 % |
24.05 % |
234 |
1378 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.