From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
86.27 % |
85.41 % |
86.40 % |
88.32 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
91.26 % |
96.65 % |
93.88 % |
35857 |
1244 |
3433 |
11.18 % |
42732 |
1803 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
77.38 % |
19.69 % |
2.92 % |
45 |
585 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.