From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
77.72 % |
82.33 % |
78.16 % |
85.85 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
83.66 % |
96.15 % |
89.47 % |
31916 |
1277 |
6234 |
11.48 % |
37711 |
2424 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
62.62 % |
28.62 % |
8.77 % |
150 |
812 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.