From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2]. 
The tables below show all of these metrics. 
| 
  
    | Benchmark | MOTA | MOTP | MODA | MODP |  
    | CAR | 77.72 % | 82.33 % | 78.16 % | 85.85 % |  
  
    | Benchmark | recall | precision | F1 | TP | FP | FN | FAR | #objects | #trajectories |  
    | CAR | 83.66 % | 96.15 % | 89.47 % | 31916 | 1277 | 6234 | 11.48 % | 37711 | 2424 |  
  This table as LaTeX
    | Benchmark | MT | PT | ML | IDS | FRAG |  
    | CAR | 62.62 % | 28.62 % | 8.77 % | 150 | 812 |  
 
 | 
[1] K. Bernardin, R. Stiefelhagen: 
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia: 
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.