From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
-101.19 % |
59.48 % |
-101.19 % |
100.00 % |
PEDESTRIAN |
-60.06 % |
0.00 % |
0.00 % |
0.00 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
0.12 % |
0.11 % |
0.12 % |
40 |
34803 |
34392 |
312.86 % |
38255 |
1395 |
PEDESTRIAN |
0.00 % |
0.00 % |
0.00 % |
0 |
0 |
0 |
0.00 % |
0 |
0 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
0.00 % |
0.00 % |
100.00 % |
0 |
0 |
PEDESTRIAN |
0.00 % |
0.00 % |
0.00 % |
0 |
0 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.