From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
87.74 % |
84.55 % |
88.92 % |
87.46 % |
PEDESTRIAN |
53.22 % |
73.69 % |
54.93 % |
91.74 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
93.52 % |
96.67 % |
95.07 % |
36710 |
1266 |
2545 |
11.38 % |
47508 |
2082 |
PEDESTRIAN |
67.13 % |
85.12 % |
75.06 % |
15701 |
2745 |
7689 |
24.68 % |
24523 |
1129 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
84.77 % |
13.38 % |
1.85 % |
404 |
607 |
PEDESTRIAN |
33.68 % |
47.77 % |
18.56 % |
395 |
1035 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.