From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
52.42 % |
75.18 % |
52.56 % |
81.20 % |
PEDESTRIAN |
34.54 % |
68.06 % |
34.89 % |
91.84 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
57.72 % |
93.72 % |
71.44 % |
20408 |
1367 |
14947 |
12.29 % |
23677 |
680 |
PEDESTRIAN |
43.94 % |
83.16 % |
57.49 % |
10194 |
2065 |
13008 |
18.56 % |
14359 |
296 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
21.69 % |
46.46 % |
31.85 % |
50 |
376 |
PEDESTRIAN |
14.43 % |
38.14 % |
47.42 % |
81 |
685 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.