From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
37.28 % |
74.36 % |
37.92 % |
81.40 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
52.25 % |
80.57 % |
63.39 % |
18486 |
4458 |
16891 |
40.08 % |
25860 |
824 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
15.54 % |
53.54 % |
30.92 % |
220 |
612 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.