From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
91.75 % |
86.17 % |
91.82 % |
88.52 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
96.08 % |
96.45 % |
96.26 % |
36234 |
1333 |
1480 |
11.98 % |
43807 |
971 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
87.54 % |
9.54 % |
2.92 % |
26 |
118 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.