From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
61.77 % |
76.93 % |
61.82 % |
82.15 % |
PEDESTRIAN |
33.33 % |
67.38 % |
33.65 % |
91.62 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
64.78 % |
97.67 % |
77.90 % |
23144 |
551 |
12581 |
4.95 % |
27061 |
895 |
PEDESTRIAN |
42.98 % |
82.44 % |
56.51 % |
9978 |
2126 |
13235 |
19.11 % |
14418 |
410 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
35.54 % |
42.77 % |
21.69 % |
16 |
422 |
PEDESTRIAN |
12.37 % |
42.61 % |
45.02 % |
72 |
818 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.