From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
65.83 % |
75.42 % |
66.43 % |
80.76 % |
PEDESTRIAN |
43.77 % |
71.02 % |
44.43 % |
92.38 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
80.58 % |
88.09 % |
84.17 % |
30689 |
4148 |
7396 |
37.29 % |
39256 |
940 |
PEDESTRIAN |
53.64 % |
85.75 % |
66.00 % |
12484 |
2075 |
10790 |
18.65 % |
16262 |
298 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
40.15 % |
50.15 % |
9.69 % |
209 |
727 |
PEDESTRIAN |
19.59 % |
39.18 % |
41.24 % |
153 |
748 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.