From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
PEDESTRIAN |
54.00 % |
73.03 % |
54.44 % |
91.59 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
PEDESTRIAN |
58.90 % |
93.60 % |
72.30 % |
13767 |
942 |
9606 |
8.47 % |
15373 |
388 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
PEDESTRIAN |
29.55 % |
46.74 % |
23.71 % |
100 |
835 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.