From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
90.06 % |
86.99 % |
90.16 % |
89.62 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
94.44 % |
96.89 % |
95.65 % |
37200 |
1195 |
2189 |
10.74 % |
43051 |
938 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
83.08 % |
14.92 % |
2.00 % |
35 |
337 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.