Method

FullMOT [FullMOT]


Submitted on 20 Feb. 2025 04:47 by
Xuan Li (Southest University)

Running time:0.1s
Environment:8 cores @ 2.5 Ghz (Python)

Method Description:
None
Parameters:
None
Latex Bibtex:
None

Detailed Results

From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2]. The tables below show all of these metrics.


Benchmark MOTA MOTP MODA MODP
CAR 90.06 % 86.99 % 90.16 % 89.62 %

Benchmark recall precision F1 TP FP FN FAR #objects #trajectories
CAR 94.44 % 96.89 % 95.65 % 37200 1195 2189 10.74 % 43051 938

Benchmark MT PT ML IDS FRAG
CAR 83.08 % 14.92 % 2.00 % 35 337

This table as LaTeX


[1] K. Bernardin, R. Stiefelhagen: Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia: Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.


eXTReMe Tracker