From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
84.75 % |
85.80 % |
84.84 % |
88.79 % |
PEDESTRIAN |
56.52 % |
66.07 % |
58.03 % |
88.75 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
93.03 % |
93.72 % |
93.37 % |
36726 |
2461 |
2752 |
22.12 % |
45817 |
1598 |
PEDESTRIAN |
74.12 % |
82.69 % |
78.17 % |
17397 |
3642 |
6074 |
32.74 % |
28745 |
1262 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
76.00 % |
18.15 % |
5.85 % |
33 |
311 |
PEDESTRIAN |
43.99 % |
43.64 % |
12.37 % |
349 |
1492 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.