From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
68.24 % |
76.57 % |
68.56 % |
81.83 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
83.56 % |
88.10 % |
85.77 % |
32587 |
4400 |
6413 |
39.55 % |
42719 |
1245 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
60.62 % |
27.08 % |
12.31 % |
111 |
725 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.