From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
75.58 % |
79.39 % |
75.88 % |
83.76 % |
PEDESTRIAN |
43.91 % |
71.86 % |
44.15 % |
92.71 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
81.76 % |
96.00 % |
88.31 % |
31330 |
1306 |
6989 |
11.74 % |
35495 |
1017 |
PEDESTRIAN |
49.52 % |
90.69 % |
64.06 % |
11522 |
1183 |
11746 |
10.63 % |
13763 |
380 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
53.08 % |
35.38 % |
11.54 % |
104 |
448 |
PEDESTRIAN |
16.15 % |
40.55 % |
43.30 % |
56 |
641 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.