Method

DLKF [KFDL]
[Anonymous Submission]

Submitted on 12 Aug. 2024 23:26 by
[Anonymous Submission]

Running time:0.11 s
Environment:GPU @ 2.5 Ghz (Python)

Method Description:
VirConv Detection
Parameters:
-
Latex Bibtex:

Detailed Results

From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2]. The tables below show all of these metrics.


Benchmark MOTA MOTP MODA MODP
CAR 90.34 % 86.67 % 90.42 % 89.39 %

Benchmark recall precision F1 TP FP FN FAR #objects #trajectories
CAR 93.55 % 98.00 % 95.72 % 36868 753 2543 6.77 % 42305 669

Benchmark MT PT ML IDS FRAG
CAR 86.15 % 5.54 % 8.31 % 25 106

This table as LaTeX


[1] K. Bernardin, R. Stiefelhagen: Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia: Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.


eXTReMe Tracker