From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
84.24 % |
85.73 % |
85.60 % |
88.62 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
88.80 % |
97.95 % |
93.15 % |
33656 |
705 |
4247 |
6.34 % |
38507 |
2382 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
73.23 % |
24.00 % |
2.77 % |
468 |
944 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.