From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
82.25 % |
80.52 % |
85.23 % |
84.22 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
89.36 % |
97.03 % |
93.04 % |
33921 |
1040 |
4038 |
9.35 % |
39367 |
3568 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
72.62 % |
23.85 % |
3.54 % |
1025 |
1402 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.