From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
31.88 % |
77.68 % |
33.36 % |
86.20 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
49.56 % |
77.82 % |
60.56 % |
17595 |
5014 |
17904 |
45.07 % |
23562 |
2063 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
21.38 % |
43.69 % |
34.92 % |
511 |
930 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.