From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
85.04 % |
85.13 % |
85.09 % |
88.11 % |
PEDESTRIAN |
42.32 % |
64.89 % |
43.33 % |
89.69 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
89.77 % |
96.69 % |
93.11 % |
34634 |
1184 |
3945 |
10.64 % |
39512 |
926 |
PEDESTRIAN |
54.05 % |
84.15 % |
65.82 % |
12634 |
2379 |
10741 |
21.39 % |
15911 |
365 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
70.92 % |
20.77 % |
8.31 % |
15 |
256 |
PEDESTRIAN |
21.99 % |
42.61 % |
35.40 % |
233 |
1141 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.