From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
78.95 % |
85.82 % |
79.04 % |
88.76 % |
PEDESTRIAN |
44.64 % |
66.08 % |
46.14 % |
88.82 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
93.24 % |
89.00 % |
91.07 % |
36770 |
4543 |
2665 |
40.84 % |
48752 |
2133 |
PEDESTRIAN |
74.05 % |
73.16 % |
73.60 % |
17381 |
6378 |
6090 |
57.34 % |
32095 |
1779 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
76.00 % |
18.31 % |
5.69 % |
31 |
275 |
PEDESTRIAN |
43.99 % |
42.96 % |
13.06 % |
348 |
1488 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.