From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
43.85 % |
78.34 % |
43.88 % |
85.36 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
45.03 % |
99.67 % |
62.04 % |
15769 |
53 |
19247 |
0.48 % |
16532 |
1102 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
12.46 % |
48.00 % |
39.54 % |
12 |
571 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.