From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
61.17 % |
78.65 % |
61.26 % |
84.15 % |
PEDESTRIAN |
27.49 % |
67.99 % |
27.81 % |
93.02 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
64.30 % |
97.83 % |
77.60 % |
23075 |
512 |
12813 |
4.60 % |
26309 |
865 |
PEDESTRIAN |
37.30 % |
80.09 % |
50.89 % |
8660 |
2153 |
14559 |
19.35 % |
13197 |
405 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
33.85 % |
38.15 % |
28.00 % |
28 |
241 |
PEDESTRIAN |
15.12 % |
34.36 % |
50.52 % |
73 |
732 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.