From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
90.03 % |
85.62 % |
91.03 % |
88.24 % |
PEDESTRIAN |
64.32 % |
75.52 % |
65.34 % |
92.28 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
92.83 % |
99.14 % |
95.88 % |
35907 |
313 |
2772 |
2.81 % |
44173 |
1011 |
PEDESTRIAN |
71.66 % |
92.24 % |
80.66 % |
16732 |
1407 |
6617 |
12.65 % |
21306 |
460 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
82.15 % |
14.92 % |
2.92 % |
344 |
620 |
PEDESTRIAN |
42.61 % |
39.86 % |
17.53 % |
236 |
896 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.