From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
51.94 % |
77.11 % |
52.30 % |
82.73 % |
PEDESTRIAN |
27.54 % |
68.48 % |
27.96 % |
91.90 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
55.96 % |
96.09 % |
70.73 % |
19819 |
807 |
15598 |
7.25 % |
23188 |
935 |
PEDESTRIAN |
36.73 % |
80.82 % |
50.51 % |
8511 |
2020 |
14658 |
18.16 % |
12687 |
520 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
20.00 % |
48.46 % |
31.54 % |
125 |
396 |
PEDESTRIAN |
8.93 % |
39.18 % |
51.89 % |
96 |
608 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.