From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
75.70 % |
78.46 % |
79.15 % |
82.83 % |
PEDESTRIAN |
16.46 % |
62.69 % |
18.73 % |
89.09 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
85.32 % |
95.18 % |
89.98 % |
32215 |
1631 |
5541 |
14.66 % |
37580 |
3239 |
PEDESTRIAN |
35.63 % |
68.31 % |
46.83 % |
8285 |
3843 |
14970 |
34.55 % |
16707 |
2300 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
58.00 % |
36.92 % |
5.08 % |
1186 |
2092 |
PEDESTRIAN |
2.41 % |
59.45 % |
38.14 % |
527 |
1636 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.