From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
85.12 % |
84.91 % |
85.17 % |
87.92 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
90.24 % |
96.40 % |
93.22 % |
35070 |
1308 |
3793 |
11.76 % |
41708 |
926 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
70.62 % |
23.54 % |
5.85 % |
15 |
318 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.