From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
68.11 % |
78.85 % |
69.03 % |
83.47 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
78.67 % |
91.99 % |
84.81 % |
29740 |
2588 |
8063 |
23.27 % |
36607 |
1530 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
37.54 % |
48.31 % |
14.15 % |
318 |
959 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.