From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
90.29 % |
85.61 % |
90.78 % |
88.33 % |
PEDESTRIAN |
63.13 % |
74.60 % |
65.13 % |
92.14 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
94.51 % |
97.32 % |
95.89 % |
36985 |
1020 |
2150 |
9.17 % |
47304 |
861 |
PEDESTRIAN |
74.87 % |
88.80 % |
81.24 % |
17481 |
2205 |
5867 |
19.82 % |
24447 |
358 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
84.77 % |
12.00 % |
3.23 % |
168 |
251 |
PEDESTRIAN |
45.02 % |
35.74 % |
19.24 % |
463 |
964 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.