From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
55.07 % |
78.35 % |
55.16 % |
84.15 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
56.72 % |
99.30 % |
72.20 % |
20023 |
141 |
15281 |
1.27 % |
21945 |
1049 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
20.46 % |
46.92 % |
32.62 % |
31 |
529 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.