From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
85.19 % |
87.10 % |
85.25 % |
89.62 % |
PEDESTRIAN |
28.93 % |
65.99 % |
30.68 % |
88.98 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
89.76 % |
96.66 % |
93.08 % |
34125 |
1181 |
3892 |
10.62 % |
38435 |
795 |
PEDESTRIAN |
43.65 % |
77.72 % |
55.90 % |
10173 |
2916 |
13132 |
26.21 % |
15431 |
718 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
67.54 % |
25.38 % |
7.08 % |
21 |
342 |
PEDESTRIAN |
11.00 % |
57.04 % |
31.96 % |
404 |
1697 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.