From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
79.99 % |
82.46 % |
80.99 % |
86.02 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
84.51 % |
98.04 % |
90.77 % |
32156 |
642 |
5896 |
5.77 % |
35250 |
1099 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
62.15 % |
32.31 % |
5.54 % |
343 |
938 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.