From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
88.19 % |
85.47 % |
88.35 % |
88.24 % |
PEDESTRIAN |
47.84 % |
64.64 % |
48.90 % |
88.60 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
94.75 % |
94.53 % |
94.64 % |
35360 |
2046 |
1960 |
18.39 % |
45087 |
1781 |
PEDESTRIAN |
66.85 % |
79.18 % |
72.49 % |
15588 |
4100 |
7730 |
36.86 % |
23764 |
1558 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
87.23 % |
11.54 % |
1.23 % |
56 |
405 |
PEDESTRIAN |
33.33 % |
50.52 % |
16.15 % |
244 |
1393 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.