From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
88.77 % |
83.95 % |
89.05 % |
86.71 % |
PEDESTRIAN |
45.02 % |
69.45 % |
45.90 % |
90.58 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
92.82 % |
97.17 % |
94.94 % |
35357 |
1028 |
2737 |
9.24 % |
45409 |
1194 |
PEDESTRIAN |
62.33 % |
79.74 % |
69.97 % |
14592 |
3707 |
8818 |
33.32 % |
22712 |
560 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
80.46 % |
15.85 % |
3.69 % |
96 |
218 |
PEDESTRIAN |
32.99 % |
41.58 % |
25.43 % |
203 |
850 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.