From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
86.95 % |
86.21 % |
87.28 % |
88.98 % |
PEDESTRIAN |
53.45 % |
65.54 % |
54.53 % |
89.37 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
90.70 % |
97.52 % |
93.99 % |
34175 |
870 |
3503 |
7.82 % |
38750 |
1128 |
PEDESTRIAN |
63.52 % |
88.31 % |
73.89 % |
14897 |
1972 |
8554 |
17.73 % |
18675 |
399 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
74.92 % |
20.31 % |
4.77 % |
116 |
544 |
PEDESTRIAN |
31.62 % |
40.21 % |
28.18 % |
250 |
1300 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.