From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
91.47 % |
85.63 % |
91.68 % |
88.28 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
96.63 % |
95.95 % |
96.29 % |
37136 |
1567 |
1295 |
14.09 % |
46680 |
791 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
89.38 % |
6.31 % |
4.31 % |
72 |
180 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.