From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
86.53 % |
85.37 % |
86.66 % |
88.29 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
91.50 % |
96.65 % |
94.00 % |
35972 |
1248 |
3341 |
11.22 % |
43069 |
1968 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
78.31 % |
19.08 % |
2.62 % |
45 |
626 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.