From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
72.72 % |
78.55 % |
73.26 % |
83.11 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
82.69 % |
92.57 % |
87.35 % |
31764 |
2548 |
6648 |
22.91 % |
38393 |
2485 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
53.85 % |
38.15 % |
8.00 % |
185 |
932 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.