From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
59.23 % |
75.45 % |
60.36 % |
82.75 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
65.97 % |
94.65 % |
77.75 % |
23821 |
1346 |
12288 |
12.10 % |
26566 |
2004 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
27.08 % |
57.38 % |
15.54 % |
389 |
1274 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.