From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
91.63 % |
87.48 % |
91.66 % |
90.10 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
95.02 % |
97.62 % |
96.31 % |
37376 |
910 |
1958 |
8.18 % |
43817 |
723 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
85.85 % |
7.08 % |
7.08 % |
12 |
233 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.